Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474293

RESUMO

Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD.


Assuntos
Diabetes Mellitus , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Monócitos/metabolismo , Adesão Celular , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Células Cultivadas
2.
Sci Rep ; 13(1): 19431, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940674

RESUMO

Ficolin-2, recently identified in atherosclerotic plaques, has been correlated with future acute cardiovascular events, but its role remains unknown. We hypothesize that it could influence plaque vulnerability by interfering in the cross-talk between macrophages (MØ) and smooth muscle cells (SMC). To examine its role and mechanism of action, we exposed an in-vitro co-culture system of SMC and MØ to ficolin-2 (10 µg/mL) and then performed cytokine array, protease array, ELISA, qPCR, Western Blot, and monocyte transmigration assay. Carotid plaque samples from atherosclerotic patients with high plasma levels of ficolin-2 were analyzed by immunofluorescence. We show that ficolin-2: (i) promotes a pro-inflammatory phenotype in SMC following interaction with MØ by elevating the gene expression of MCP-1, upregulating gene and protein expression of IL-6 and TLR4, and by activating ERK/MAPK and NF-KB signaling pathways; (ii) increased IL-1ß, IL-6, and MIP-1ß in MØ beyond the level induced by cellular interaction with SMC; (iii) elevated the secretion of IL-1ß, IL-6, and CCL4 in the conditioned medium; (iv) enhanced monocyte transmigration and (v) in atherosclerotic plaques from patients with high plasma levels of ficolin-2, we observed co-localization of ficolin-2 with SMC marker αSMA and the cytokines IL-1ß and IL-6. These findings shed light on previously unknown mechanisms underlying ficolin-2-dependent pathological inflammation in atherosclerotic plaques.


Assuntos
Monócitos , Placa Aterosclerótica , Humanos , Monócitos/metabolismo , Interleucina-6/metabolismo , Placa Aterosclerótica/patologia , Macrófagos/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Miócitos de Músculo Liso/metabolismo
3.
Polymers (Basel) ; 12(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255639

RESUMO

Calcific aortic valve disease (CAVD), a degenerative disease characterized by inflammation, fibrosis and calcification, is accelerated in diabetes. Hyperglycemia contributes to this process by mechanisms that still need to be uncovered. We have recently developed a 3D model of the human aortic valve based on gelatin methacrylate and revealed that high glucose (HG) induced osteogenic molecules and increased calcium deposits in a pro-osteogenic environment. To further understand the events leading to calcification in diabetic conditions in CAVD, we analyzed here the inflammatory and remodeling mechanisms induced by HG in our 3D model. We exposed valvular endothelial cells (VEC) and interstitial cells (VIC) to normal glucose (NG) or HG for 7 and 14 days, then we isolated and separated the cells by anti-CD31 immunomagnetic beads. The changes induced by HG in the 3D model were investigated by real-time polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Our results showed that HG induced expression of different cytokines, cell adhesion molecules and matrix metalloproteinases in VEC and VIC. In addition, protein kinase C was increased in VEC and VIC, indicating molecular mechanisms associated with HG induced inflammation and remodeling in both valvular cells. These findings may indicate new biomarkers and targets for therapy in diabetes associated with CAVD.

4.
J Cell Mol Med ; 22(9): 4366-4376, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29992758

RESUMO

Patients with diabetes mellitus have an increased risk of myocardial infarction and coronary artery disease-related death, exhibiting highly vulnerable plaques. Many studies have highlighted the major role of macrophages (MAC) and smooth muscle cells (SMC) and the essential part of metalloproteases (MMPs) in atherosclerotic plaque vulnerability. We hypothesize that in diabetes, the interplay between MAC and SMC in high glucose conditions may modify the expression of MMPs involved in plaque vulnerability. The SMC-MAC cross-talk was achieved using trans-well chambers, where human SMC were grown at the bottom and human MAC in the upper chamber in normal (NG) or high (HG) glucose concentration. After cross-talk, the conditioned media and cells were isolated and investigated for the expression of MMPs, MCP-1 and signalling molecules. We found that upon cross-talk with MAC in HG, SMC exhibit: (i) augmented expression of MMP-1 and MMP-9; (ii) significant increase in the enzymatic activity of MMP-9; (iii) higher levels of soluble MCP-1 chemokine which is functionally active and involved in MMPs up-regulation; (iv) activated PKCα signalling pathway which, together with NF-kB are responsible for MMP-1 and MMP-9 up-regulation, and (v) impaired function of collagen assembly. Taken together, our data indicate that MCP-1 released by cell cross-talk in diabetic conditions binds to CCR2 and triggers MMP-1 and MMP-9 over-expression and activity, features that could explain the high vulnerability of atherosclerotic plaque found at diabetic patients.


Assuntos
Glucose/farmacologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Monócitos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Aorta/citologia , Aorta/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Colágeno/genética , Colágeno/metabolismo , Meios de Cultivo Condicionados/química , Cultura em Câmaras de Difusão , Feto , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Cultura Primária de Células , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...